
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

21.Jul.99

3. REPORT TYPE AND DATES COVERED

THESIS
4. TITLE AND SUBTITLE

GROUND BASED INTERCEPT OF A BALLISTIC MISSILE: BATTLE
MANAGEMENT

6. AUTHOR(S)

2D LT ROXBURGH MICHELLE I

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF COLORADO AT COLORADO SPRINGS
8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-195

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

14. SUBJECT TERMS 15. NUMBER OF PAGES

25
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18 SECURITY CLASSIFICATION
OF THIS PAGE

19 SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF
ABSTRACT

DTIC QUALITY INSPECTED 2
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

GROUND BASED INTERCEPT OP A BALLISTIC MISSILE:

BATTLE MANAGEMENT

by

MICHELLE IRENE ROXBURGH

B.S., United States Air Force Academy, 1998

A creative investigation to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Engineering in Space Operations

Department of Mechanical and Aerospace Engineering

1999

r?

Roxburgh, Michelle Irene (M.E., Space Operations)

Ground Based Intercept of a Ballistic Missile: Battle

Management

Creative investigation directed by Dr. Don Caughlin

This creative investigation is based on work completed

for ASE 583, Engineering Simulation. As a group project, the

class designed and simulated a ballistic missile intercept

system. This particular paper covers the battle management

aspects of this simulation. Specifically, it addresses issues

of infrared data processing, launch message timing, initial

track generation, and track updating.

19990804 192

11

© Copyright by Michelle Irene Roxburgh 1999
All Rights Reserved

IV

CONTENTS

I. INTRODUCTION 1

II. BACKGROUND 1

III. IR DATA PROCESSING 5

IV. LAUNCH MESSAGE TIMING 14

V. INITIAL TRACK GENERATION 16

VI. TRACK UPDATES 19

VII. CONCLUSION 24

BIBLIOGRAPHY 25

APPENDIX

A. IR Data Processing Code

B. Launch Message Timing Code

C. Initial Track Generation Code

D. Two Body Propagator (PKEPLER) Code

E. Track Updating with New Measurements Code

F. Track Updating without New Measurements Code

G. Additional Functions

V

TABLES

None.

VI

FIGURES

Figure

1. Data Flow Diagram 3
2. Vector Geometry 6
3. Nadir and Rotation Angle Diagram 6
4. Two Satellite Vector Geometry . 7

I. INTRODUCTION

This paper is based on a group simulation project

completed for ASE 583, Engineering Simulation. The class

designed and simulated a ballistic missile intercept system;

technical issues associated with the detection, acquisition,

and hit of an incoming missile were primary concerns.

Specific components modeled in this simulation include space-

based sensors, ground based radars, battle management, the

interceptor missile, and the global positioning system (GPS).

This particular paper covers the battle management aspects of

the simulation. The four main topics of discussion will

include infrared data processing, launch message timing,

initial track generation, and track updating.

II. BACKGROUND

Battle management is the capability for a designated

operational commander to plan, coordinate, direct, and control

weapons and sensors. Battle management technology includes

the development of tool sets that assist in planning,

reasoning, and decision-making, given uncertainty and

incomplete information. The Ballistic Missile Defense

Organization (BMDO) groups battle management with command,

control, and communications in its Ballistic Missile Defense

(BMD) Program; it is commonly referred to as BM/C3. BM/C3 has

been identified by BMDO as one of the most difficult issues

associated with missile defense systems. Unlike other

elements, BM/C3 is a software development problem rather than

a hardware development problem. The primary software

challenge is making use of apriori, inferred, and most likely

information to make correct decisions for a given situation

based on known information. Development of collaborative

software tools connecting geographically distributed staff in

near real-time fashion is a secondary issue. Other challenges

for BM/C3 include keeping the system adaptable so that all

imaginable situations are included and so that new

capabilities provided by the rapidly evolving

telecommunications structure may be used. Human-system

interface is also an issue. In light of these technical

problem areas, BMDO is conducting numerous exercises and war

games to validate its BM/C3 concepts. These concepts continue

to evolve through each iteration of testing1.

In the ASE 583 simulation, battle management takes on a

much more limited scope than the above BM/C3 description.

Only selected behaviors are modeled due to the complexity of

the problem. Behaviors were chosen based on preliminary

guidance provided by a requirements list and based on the

overall necessity of the behavior in the simulation. With

this in mind, certain behaviors were selected; the

responsibilities of the Battle Manager were determined to

include infrared data processing, interceptor missile launch

timing, initial track determination of the target missile, and

relay of track target updates to the interceptor missile. The

Battle Manager is a central location of .data and information

distribution; as a result, data flow is of utmost importance.

The following diagram shows the data flow to and from the

Battle Manager:

Angles

Track

Location Look Angles

Figure 1 - Data Flow Diagram

The infrared sensors send data to the Battle Manager,

which is then processed and sent to the search radar. Next,

the track radar sends data to the Battle Manager, which is

processed into an initial track or an updated track, depending

on the number of radar observations. The initial track or

updated track is then sent to the interceptor missile. The

launch message is sent to the interceptor at the appropriate

time.

The remainder of this paper is dedicated to the modeled

behaviors and is divided into four sections:

1. IR Data Processing

2. Launch Message Timing

3. Initial Track Generation

4. Track Updates

Each section discusses requirements, inputs and outputs,

algorithms, and assumptions.

III. IR DATA PROCESSING

The infrared sensors send data to the Battle Manager once

a launch is detected. Information must then be conveyed to

the search radar so that ground based radar systems can track

the target missile. Because the infrared data is incompatible

with radar architecture, the Battle Manager must process it

into a usable form.

Infrared data processing depends primarily on the type of

data provided by the infrared sensors. Originally, the plan

was to include only one space-based infrared sensor in the

simulation. Because one sensor alone cannot determine the

altitude of the target missile, altitude would be assumed or

modeled based on the type of missile. Calculations showed,

however, that for a missile ranging between 0 and 1000

kilometers, latitude and longitude calculations could be

several degrees off if invalid assumptions were made. This

was unacceptable for the system. It was then determined that

two infrared sensors at separate locations would provide a

better solution. Two separate infrared sensors allow the

position of the target missile to be determined through vector

geometry. Azimuth and elevation for the search radar can then

be calculated from the position vector.

Both infrared sensors are aboard geostationary

satellites, which means their position is always known. Using

Figure 2, it is obvious that the position of the target

missile (RICBM) can be found with simple vector addition.

Range Vector

Figure 2 - Vector Geometery

Finding the range vector is the complex part of the

process. This is why two infrared sensors at different

locations are needed. Each sensor provides a nadir angle (r|)

and a rotation angle (G) to the Battle Manager, as shown by

Figure 3.

X

Figure 3 - Nadir and Rotation Angle Diagram

The nadir angle is the angle between the origin and the

target missile (point A) from the geostationary satellite; the

rotation angle is the angle between the X axis and target

missile, going clockwise.

The nadir and rotation angles from the infrared sensors

can be used to calculate line of sight vectors from each

satellite to the target missile; these are calculated in a

North-East-Down (NED) coordinate frame with each satellite at

the origin of its own frame. The line of sight vectors are

unit vectors of the range vectors, and as a result, the range

magnitude must be determined to find the components of the

range vector. From the Figure 4, it is easy to see that the

two triangles of satellites 1 and 2 share a common side, RICBM.

Range Vector 1

Range Vector 2

Figure 4 - Two Satellite Vector Geometry

Using this geometry, Rsati plus Range Vector 1 can be set

equal to RSat2 plus Range Vector 2.

^+^1 = ^ + ^12

Where Ri is the magnitude of Range Vector 1

R2 is the magnitude of Range Vector 2

Li is the line of sight vector 1

L2 is the line of sight vector 2

Then, either range magnitude can be solved for and

substituted into the respective equation side to calculate

RICBM- The final outputs of the process are an azimuth and

elevation angle for the search radar site. The process as a

whole is outlined in greater detail in the steps below:

Step 1: Calculate the line of sight vector from each infrared

sensor to the target missile. This is done using the nadir

(t|) and rotation (6) angles provided by the infrared sensors.

L =

SIN(r})* SIN(0)'

SIN(TJ)*COS(0)

COS(TJ)

This line of sight vector is in a NED frame, which is useful

for the given infrared data.

Step 2: By rearranging the geometry equation derived from

Figure 4, R2 can be calculated. The second satellite must be

rotated into the first's NED frame, which is taken into

account in the equation for R2. As a note, the equation for R2

is formulated especially for geostationary satellites.

R^+RLl=R,i + RiL2 \rart T -*M' sat! T iv2J

R* -L2Q)*Ll(2)
Ll(l)

SIN(-AA)* Sat!

+12(2) * COS(-AA) + £2(3) * SDV(-AA)

Where A, is the IR sensor's longitude

AA is equal to A2 - A4

Sat2 is the radius a geostationary satellite

Step 3: Calculate RICBM in the NED frame.

RICBM(NED) = [RSat2] + R2*L2

Step 4: Rotate RICBM into the IJK frame.

RICBM(IJK) = ROT3(-AA)ROT2 (90°) RICBM (NED)

Step 5: Calculate azimuth and elevation.

1. Calculate the position vector of the site in ECI

coordinates, assuming a non-rotating and spherical earth.

siteUK

(REarth + h)Cos(<f>gc)Cos(.AE)

(REart+hycosy„)&»&,)

(REarth + h)Sin(0gc)

Where REarth is the radius of the earth

Pgc is the geocentric latitude of the radar site

A is the longitude of the site (east is positive)

h is the altitude of the site

10

2. Calculate the range vector from the radar site to the

target missile in UK coordinates.

PIJK = RICBM - Rsite

3. Rotate the above range vector into SEZ coordinates.

PSEZ = ROT2 (90°-<|)gc) ROT3 (XE) PIJK

4. Calculate azimuth and elevation.

-i AZ = TAN-

EL = SIN'1

PsEzi2)

~ PSEZQ)

(PSEZQ^

PSEZ

This process is coded in Matlab and is attached as

Appendix A. The original code was completed in Fortran before

transferring to the more user-friendly Matlab, which is

compatible with the simulation software, Simulink and

StateFlow.

Because there is only one radar site, azimuth and

elevation were chosen as outputs for simplicity. Although

less robust than outputting the position vector of the target,

it consolidates the processing at the Battle Manager and lets

the Radar Engineer concentrate on the radar system itself.

The infrared data processing, as well as the three issues

yet to be discussed, are based two main assumptions: a non-

rotating earth and a spherical earth. The non-rotating earth

11

assumption is valid because the earth rotates once every

twenty-four hours and the simulation takes place in

approximately thirty minutes, which means the earth will have

completed a little over 2% of a rotation. Using this

assumption simplifies calculations of Local Sidereal Time

(LST). LST is the addition of Greenwich Sidereal Time (GST)

and radar site longitude; because of the non-rotating earth

assumption, GST is constant and chosen to be zero, which means

LST is simply radar site longitude. This makes the problem

easier in that LST is constant. The substitution of site

longitude for LST has already been made in the above

algorithm.

The second assumption is that of a spherical earth. In

reality, the earth is not a perfect sphere. It is flattened

at the poles, and gravitational perturbations differ at

different locations around the earth. Geodetic latitude is

normally used; for spherical earth calculations, however,

geocentric latitude is used. Geocentric latitude (cpgc) is the

angle measured at the Earth's center from the plane of the

equator to the point of interest; geodetic latitude (cpgd) is

the angle between the equatorial plane and the normal to the

surface of the ellipsoid. This angle difference can cause

discrepancies of up to several kilometers at high latitudes.

Because all other simulation systems are assuming a spherical

12

earth, this assumption works. If needed, an oblate earth

could be modeled in the Battle Manager portion of the

simulation by simply replacing the spherical site vector

function with an oblate site vector function.

It is understood that these assumptions make the

simulation unrealistic. Their resulting simplicity, however,

allow for a working simulation in a shorter amount of time.

Because simulations typically take longer than planned, this

is key. If time allows or further study is needed, these

assumptions will be the first to be taken out.

Validation is a key issue in modeling behaviors. It is

important to know that a process is producing expected results

before it is used in a simulation. The IR data processing

code went through several steps of validation. First, it was

verified by inputting test data from the infrared sensors and

then using previously coded functions to convert the outputted

azimuth and elevation back into a position vector for the

target missile. This position vector was then checked with

the initial truth position vector for accuracy. Second, many

numbers were inputted to the code as sanity checks. For

example, if the target missile was directly over the radar

station, elevation should be 90° and azimuth should be 0°;

these expected results were verified with the computer code.

Finally, even after the code was validated as an individual

13

entity, it had to be validated as a part of Simulink for the

simulation. Because Matlab functions in Simulink accept only

one vector as input and one vector as output, the code had to

be tested yet again to check if the right inputs were being

sent in the right order. This was accomplished using a test

module in Simulink, inputting known numbers, and checking the

output with previously calculated numbers.

14

IV. LAUNCH MESSAGE TIMING

The Battle Manager is responsible for the launch of the

interceptor missile, which means the Battle Manager must send

a launch message to the interceptor missile at a specified

time. The time must allow the kill vehicle to intercept the

target exoatmospherically. The interceptor directs itself

toward the target missile using the target's current state;

therefore, the launch message must be sent when the target

missile is above the horizon relative to the interceptor

launch site.

There are many ways the launch message timing could have

been approached. An intercept point could have been chosen

beforehand to meet this particular scenario's requirements; a

launch window could have been determined given the range

constraints of the interceptor and the exoatmospheric

intercept requirement; or the interceptor missile could have

been sent the launch message immediately after the initial

track was acquired. Initially, the plan was to launch

immediately after the initial track was acquired. This

option, however, turned out to be unacceptable due to the kill

vehicle controls. Because the interceptor directs itself

toward the current position of the target missile, positions

that are below the horizon relative to the kill vehicle cause

it to fly through the earth and thus crash. When the initial

15

track is acquired, the target missile is well below the

horizon relative to the interceptor. As a result, the launch

message will be sent to the kill vehicle under the condition

that the elevation angle relative to the interceptor launch

site is greater than or equal to zero.

The algorithm for determining the elevation angle at the

launch site is almost exactly the same as Step 5 of IR Data

Processing. The only difference is that launch site data,

including latitude, longitude, and altitude, is used instead

of radar site data. Input includes the position and velocity

vector of the target missile, and the only output value is

elevation. The velocity vector is not needed in the

calculation; however, it is easier to include it for the

simulation architecture. The launch message is sent to the

interceptor the first time elevation is greater than or equal

to zero.Like the infrared data processing, this process is

coded in Matlab; it is attached as Appendix B. It was

validated in the infrared data processing section.

The same assumptions of a non-rotating, spherical earth

still apply. The spherical earth assumption affects the

elevation calculation by means of the site vector computation.

The assumption is still valid, however, because all elements

of the simulation are using it.

16

V. INITIAL TRACK GENERATION

An initial track of the target missile must be

determined. For a given time, the track radar will send

range, azimuth, and elevation to the Battle Manager. The

Battle Manager is responsible for determining the position and

velocity vectors of the target given this information.

To accomplish this task, three observations of range,

azimuth, and elevation are needed. Because an initial track

must be established as soon as possible, the first three

observations from the track radar are used in this process.

To begin, each observation of range, azimuth, and

elevation is converted into a position vector in the Earth

Centered Inertial (ECI) coordinate frame. This initial orbit

determination problem then becomes one of three position

vectors and time. There are two primary methods for this type

of problem: Gibbs method and Herrick-Gibbs method. Herrick-

Gibbs method of initial orbit determination is a variation of

the Gibbs method. Both find the velocity vector of the middle

observation and require three nonzero, coplanar vectors, which

represent three time-sequential vectors of an orbit. Gibbs

method is the more robust method; it works best when the

vectors are more than a degree apart. In the simulation

problem, however, data is processed at close intervals because

of its critical nature. As a result, the position vectors are

17

less than a degree apart; this is where Herrick-Gibbs' more

limited application is useful. Herrick-Gibbs method works

best when the position vectors are closely spaced. The

following outlines a step-by-step procedure on how this

process is implemented:

Step 1; Calculate the position vector of the radar site in ECI

coordinates, assuming a non-rotating and spherical earth, in

the same manner as Step 5 of IR Data Processing.

Step 2: Calculate the range vector of all three observations

in SEZ coordinates.

PSEZ

- pCos(El)Cos(ß)

pCos(El)Sin(ß)
pSin(El)

Step 3: Using the nonrotating, spherical earth assumption,

transform the range vector of all three observations into ECI

coordinates.

pIJK = ROT3(-AE)ROT2(-(90°-<f>gc))

Step 4; Calculate the position vector of all three

observations in ECI coordinates.

ruK — PUK
+ rs siteUK

18

Step 5: Use Herrick-Gibbs method of initial orbit

determination to determine the velocity vector of the second

observation.

1. Calculate the changes in time.

At3l = t3 - ti

At32 = t3 - t2

At21 - t2 " tl

2. Calculate the middle velocity vector.

V2 = -At32
1 - + ."

{At2lAt3l 12r,3
1 -+."

KAt21At32 I2r2 j

+ At. 21
1 .+ "

KAt32At31 12r3
3 j

The output is an orbit track of position and velocity at

the middle observation time. The actual Matlab code is

attached as Appendix C; it was validated by inputting test

data and matching the output with known results. Initially,

it was not known if Herrick-Gibbs could handle observations as

close together as one second or less; tests indicated that

Herrick-Gibbs could be used with observations 0.0001 seconds

apart or less, which is more than the simulation needs.

Herrick-Gibbs method actually increased its accuracy with

smaller time intervals and angle separations.

19

VI. TRACK UPDATES

The interceptor missile needs the most current target

track possible. As a result, the Battle Manager must update

the target track at intervals required by the kill vehicle.

The updated track must then be sent to the kill vehicle.

When new information, including range, azimuth, and

elevation, is available from the track radar, the target track

is updated using an Extended Kaiman Filter. An Extended

Kaiman Filter is ideal for the simulation because it estimates

the current state of the target missile. There are times,

however, when new radar data is not available. This happens

because the kill vehicle needs updates more often than the

track radar sends new information. Because the kill vehicle

needs up-to-date information, the track must be updated using

another method. For these circumstances, the track must be

updated using another method.

Inputs for the Extended Kaiman Filter include initial

position and velocity vectors, an initial covariance matrix,

and the time change between states. In addition, range,

azimuth, and elevation for the second state are required.

Outputs include position and velocity vectors and a covariance

matrix. The Extended Kaiman Filter will be implemented in the

following manner:

20

Step 1: Propagate the initial state forward from timeic to

timeK+i using a two-body propagator. This code is based on

David A. Vallado's PKEPLER algorithm in Fundamentals of

Astrodynamics and Applications2. The initial position and

velocity vectors are propagated through the time of flight to

determine the current position and velocity vectors.

Rk,Vk,TOF => RK+I,VK+I

The code is included as Appendix D.

Step 2: Use Step 5 of IR Data Processing to calculate the

nominal observations (range, azimuth, and elevation) of the

predicted state vector.

Step 3: Calculate the 6x6 state transition matrix, (|>.

4 = I + FAt + 0.5 (F2At)

Where I is the identity matrix (6x6)

F is a two body partial derivative matrix

At is the time difference between states

Step 4: Calculate the predicted covariance matrix, PK+I.

PK+I = (|>PK<|>
T
 + Q

Where PK is the initial covariance matrix

Q is the modeling error

Step 5: Calculate H, a 3 x 6 matrix. For this simulation, the

H matrix is computed numerically. Each element of the

predicted position vector is perturbed individually,

21

corresponding to the first three columns. Perturbed range,

azimuth, and elevation are then calculated for the

observation. The difference between the perturbed and nominal

values represents the numerator in each H matrix value. The

denominator is simply the difference between the perturbed R

element and its nominal value; this process is called finite

differencing. The last three columns of the H matrix are

zero.

H

A/7, Aft Apt

Arj Arj ArK

Aazj

Ae/j

"^T

.0..0..0

.0..0..0

Step 6: Calculate the Kaiman Gain, a 6 x 3 matrix.

T T —1
KK+I = PK+IH K+i [HK+IPK+IH K+i + RK+I]

Where R is the inverse of the weighting matrix

Step 7: Calculate the residual, Z.

7 =
PActual PNO min al

A2Actual ~ ^ZNominal

~^Actual ~ ^''Nominal

Step 8: Calculate the new state vector, XNEW and the new

covariance matrix, PNEW.

AXK+I = KK+IZK+I

Xnew = XK+1 + Ax K+l

22

PNEW = [PK+I - KK+IHK+I] PK+I

This process has been coded and verified in Matlab; it is

attached as Appendix E. Problems can occur in any Kaiman

Filter when the filter becomes smug, meaning the error is so

small new observations are being disregarded by the filter.

This can be fixed by adjusting the modeling error, Q, in the

filter. In addition, the initial covariance matrix is

assumed. This matrix can have an effect on how fast the

Kaiman filter converges on a solution.

For times when no new radar information is available, an

alternative method is used to update the track. Inputs

include position and velocity vectors, a covariance matrix,

and a change in time; outputs include the new position and

velocity vectors and a new covariance matrix. This method is

implemented in the following steps:

Step 1: Calculate the 6x6 state transition matrix, (|).

4> = I + FAt + 0.5 (F2At)

Where I is the identity matrix (6x6)

F is a two body partial derivative matrix

At is the time difference between states

Step 2: Calculate the new (predicted) covariance matrix,PK+I.

This is just an estimate, since no new radar measurements are

available.

23

PK+I = 4>PK<|)
T
 + Q

Where PK is the initial covariance matrix

Q is the modeling error

Step 3: Calculate the new (predicted) position and velocity

state using the two-body propagator of Step 1 of the Kaiman

filter algorithm.

This process has been coded and verified in Matlab; it is

attached as Appendix F; additional battle management code used

throughout all of the algorithms is attached as Appendix G.

Because of the small time increments, this process is fairly

simple and accurate even with the spherical, non-rotating

earth assumption.

24

VII. CONCLUSION

This paper covered aspects of battle management simulated

in a ballistic missile defense scenario designed by the Spring

Semester class of ASE 583. Topics covered include infrared

data processing, launch message timing, initial track

generation, and track updates. The surface of battle

management was hardly scratched modeling these four behaviors

and knowing the path of the target missile with no

uncertainty; the complexity of an actual battle management

system is readily apparent. It is easy to see why an actual

missile defense system has not yet been successfully

developed.

25

BIBLIOGRAPHY

"Ballistic Missile Defense Program," Ballistic Missile
Defense Organization. Internet. Available from
http//www.acq.osd.mil/bmdo/bmdolink/html/ccc.html.

Vallado, David A., Fundamentals of Astrodynamics and
Applications, New York: McGraw-Hill Companies, Inc, 1997

Appendix A:

IR Data Processing Code

> o o o o o 0,0 Q.^Q.^Q,Q-^Q-^&Q.Q-Q.Q.Q.&Q.&Q-Q-Q.&Q.&Q.^&&S-S-9-9-9-9-5-9-9-S-9-9-9-9-S-9-9-9-S-&S-9-9-&-S-9-9-S-9-t:

S'O'O'O'Ö'O'S'O'OOO'OOOOOOOOOOOOOOO'OOO'OOO'OOOO'öOOOOOOOOOOOOOOOOOO'OOOOOOOO'OO'

function ir

Michelle I. Roxburgh 11 May 1999

This function determines the azimuth and elevation angle of
the target missile at a predetermined radar site, given
a nadir angle and a rotation angle from two separate IR
sensors.

Input is a vector of width 4.

Output is a vector of width 2.

Input:
Rotationl
Nadirl
Rotation2
Nadir2

Output:
AZ
EL

Rotation angle from sensor 1 (deg)
Nadir angle from sensor 1 (deg)
Rotation angle from sensor 2 (deg)
Nadir angle from sensor 2 (deg)

Azimuth from the given radar site (deg)
Elevation from the given radar site (deg)

function [OUTPUT] = ir(INPUT);

format long

% INPUT = [Rotationl,Nadirl,Rotation2,Nadir2]

Rotationl = double(INPUT(1,1)*pi/180) ;
Nadirl = double(INPUT(1,2)*pi/180);
Rotation2 = double(INPUT(1,3)*pi/180) ;
Nadir2 = double(INPUT(1,4)*pi/180) ;

REarth = 6378137.0;
GST = 0.0;
F = 0.006694385;

%******** satellites at GEO

Sat2 = 42241100.0;
Lonl = 0.0 * pi/180;
Lon2 = -35.0 * pi/180;
DeltaLon = Lon2 - Lonl;

%******** Radar Site

Sitlat = 62.0 * pi/180;
Sitlon = -47.0 * pi/180;
Sitalt = 5.0;
LST = GST + Sitlon;

Sitlat = atan((l - F)*tan(Sitlat));

[RS] = Site (Sitlat,LST,Sitalt);

%******** IR sensor Output

Ll(l,
Ll(2,
Ll(3,

) = sin(Nadirl) * sin(Rotationl);
) = sin(Nadirl) * cos(Rotationl);
) = cos(Nadirl);

LI mag = sqrt((Ll(l)A2) + (L1(2)A2) + (L1(3)A2));

L2(l,
L2(2,
L2(3,

= sin(Nadir2) * sin(Rotation2);
= sin(Nadir2) * cos(Rotation2);
= cos(Nadir2);

L2_mag = sqrt((L2(l)A2) + (L2(2)A2) + (L2(3)A2));

Tempi = sin(-DeltaLon) * Sat2;
Temp2 = -L2(l) * LI(2) / Ll(l);
Temp3 = L2(2) * cos(-DeltaLon) + L2(3) * sin(-DeltaLon);
Range2 = Tempi / (Temp2 + Temp3);

RTempl(1,
RTempl(2,
RTempl(3,

= Range2 * L2(1);
= Range2 * L2(2);
= -Sat2 + Range2 * L2(3);

RTempl_mag = sqrt((RTempl(1)A2) + (RTempl(2)A2) + (RTempl(3)A2));

RTemp2 = R0T2(RTempl, pi/2);
R = ROT3(RTemp2, -Lon2);
R_mag = sqrt(R(l)A2 + R(2)A2 + R(3)A2);

[RHO,AZ,EL] = RAZEL (R,RS,Sitlat, Sitalt, LST) ;

AZ = double(AZ*180/pi) ;
EL = double(EL*180/pi)

% OUTPUT = [AZ,EL]

OUTPUT = [AZ,EL];

return;

i o o o o o Q.0,0 ttaao^o^aaaaa&aaaaaa^aaaaaaaaaaaaao^o^g.
j'o'o^o'S'o^'So^o'o'o'o'ooo'o o "5 o o o o o'o o o o "o o "o o o "o o o o o o

% %
% function site %
% %
% Michelle I. Roxburgh 11 May 1999 %

% This function calculates the position location, given site %
% latitude, local sidereal time, and site altitude. It %
% assumes a spherical earth. %
2. % •s °
% Input: %
% Sitlat - Site latitude (rad) %
% LST - Local sidereal time (rad) %
% Sitlon - Site longitude (rad) %
8- % •6 o

% Output: %
% RS - Site position vector - 3 (m) %
% %
0.0 o o o Q.Q.O o o Q.O Q.O o o o o Q.O o o o o o Q.ft?.9.S-J&9-9-S'9'S-2-9-&^9'9'&&9'9-9-9-9'S&9-5'3'9-S'9'S-9'9-S'9-S-3'9-S-9-S-9' ^O"6'6'6'6i5t)'6'6'6^>'ot>'o'oi5'o'ot5'6'o'o'o'o'o'o'oooo 00000 o'oooo 000 o oooooo'o o 00000000000000000 o

function [RS] = Site (Sitlat,LST,Sitalt);

format long

% Define Constants

REarth = 6378137.0;

RS(1,
RS(2,
RS(3,

) = (REarth+Sitalt)*cos(Sitlat)*cos(LST);
) = (REarth+Sitalt)*cos(Sitlat)*sin(LST);
) = (REarth+Sitalt)*sin(Sitlat);

return

3'O'O'O'O'O'O'O'D^'O^ CO o o"o o o o"o"o O "0 "O "O "O o"o O'O'O'O'O'O'O'O O'O'O'O'O'O'O'O'O'O'O^'O^'O'O'O'O'O'O'O'O'O'D'D'O'O'O'OI

function razel

Michelle I. Roxburgh 11 May 1999

This function determines range, azimuth, and elevation, given
a position vector, a site position vector, site
site latitude, site altitude, and local sidereal time.

Input:
R
RS
Sitlat
Sitalt
LST

Position vector (m)
Site position vector (m)
Site latitude (rad)
Site altitude (m)
Local sidereal time (rad)

Output:
RHO
AZ
EL

- Range (m)
- Azimuth (rad)
- Elevation (rad)

^^9-^^&^^a^^^^a&^&^&9-^9-^9,oooaaoaaaaaaaaaoaaaaaaaaaaaaaaaaaaaaaaaaao,aac
^'O'O'O'O'O'O'O'Ö'O'ÖO'O'O^'OOO'OOOOOOO'O'O'OO'O'O'OOOOOOOOOOOOO'OOOOOOOOOOOOOOOOOOOOOOOO'!

function [RHO,AZ,EL] = RAZEL (R,RS,Sitlat,Sitalt, LST);

format long

% Calculate RHO IJK

RH0IJK(1,
RHOIJK(2,
RHOIJK(3,

) = double(R(l) - RS(1))
) = double(R(2) - RS(2))
) = double(R(3) - RS(3))

[RHOIJKmag] = MAG (RHOIJK);

% Rotate RHO to SEZ

Colat = double(pi/2.0 - Sitlat);
[Temp] = ROT3(RHOIJK,LST);
[RHOSEZ] = ROT2(Temp,Colat) ;
RHOSEZmag = MAG (RHOSEZ);

% Calculate RHO, AZ, and EL

RHO = RHOSEZmag;
AZ = atan2(RHOSEZ(2),-RHOSEZ(1)) ;
EL = asin(RHOSEZ(3)/RHO);

if AZ < 0.0
AZ = AZ + 2.0D0*pi;

end

return

Appendix B:

Launch Message Timing Code

Q.Q-Q.Q.Q.Q.Q.Q-Q-Q.Q.Q.Q.Q.9.Q.5-Q.5-9.Q-9.Q.9.Q.Q-Q-Q.Q.Q-Q-5-9-Q-9-Q-5-9-Q-Q-^Q-9-5-Q-^Q-9-9-Q-S-3-5-9-9-Q-Q-9-5-S-9-Q-Q-9.^5-9-9-9-Q-

% function launch %
% %
% Michelle I. Roxburgh 11 May 1999 %
9- 9-

% This function determines elevation, given a position vector. %
% It also accepts the velocity vector, which makes %
% integration with Simulink easier. %
s- ' s.

% Input is a vector of width 6. It includes the target %
% position vector (3) and the target velocity vector (3). %

% Output is elevation. %
% %
% Input: %
% R - Position vector (m) %
% V - Velocity vector (m/s) %
% %
% Output: %
% El - Elevation (deg) %

&9-9-9-S-9-S-S-9-9-9-9-9-9-9-2-S-9-9-9-9-S-9-9-&9-9-9-9-99-9-9-9-Q-9-9-99-9-9-9-9-99-9-9-9-9-9-9-S-9-9-9-e-9-9-9-S-9-Q-9-Q-G-Q-Q-9-9-9-
ooooooooooooooo'o'ooooooooooooooooooooooooooooo'ooooooooo'oooooo'o'5'o'o'oo'o'o'o'o

function [OUTPUT] = launch (INPUT);

format long

R = [INPUT(1,1);
INPUT(2,1);
INPUT(3,1)];

V = [INPUT(4,1);
INPUT(5,1);
INPUT(6,1)];

F = 0.006694385;

LaunchLat = double(40.75*pi/180.0) ;
LaunchLon = double(-74.l*pi/180.0);
LaunchAlt = 230
GST =0.0;
LST = double (GST + LaunchLon);

LaunchLat = atan((l - F)*tan(LaunchLat));

[RS] = Site (LaunchLat,LST,LaunchAlt);

% Calculate RHO UK

RHOIJK(l,
RHOIJK(2,
RHOIJK(3,

) = double(R(l) - RS(1))
) = double(R(2) - RS(2))
) = double(R(3) - RS(3))

[RHOIJKmag] = MAG (RHOIJK);

% Rotate RHO to SEZ

Colat = double(pi/2.0 - Sitlat);
[Temp] = R0T3(RH0IJK, LST) ;
[RHOSEZ] = ROT2(Temp,Colat);
RHOSEZmag = MAG (RHOSEZ);

% Calculate EL

EL = double(asin(RHOSEZ(3)/RHO)) ;

EL = double(EL*180/pi);

OUTPUT = EL;

return

Appendix C:

Initial Track Generation Code

^&9-9-S-9-9-e-9-9-9-9-9-9-9-S-S-S-9-9-S-9-9-9-S-9-9-9-9-9-9-9-9-9-9-9-9-9-9-&9-9-9-9-9-9-9-9-9-9-9-9-9-9-S-Q-9-9-S-Q-Q-Q-e-9-5-Q-Q-C
>ooooooooooooooooooo'o"ooooooooooooooooooooooooooooooooooo'oo'oooo*o'o'o'o'o1

function hgibbs

Michelle I. Roxburgh 11 May 1999

This function implements Herrick-Gibbs method of initial
orbit determination, given three observations of range,
azimuth, elevation, and time.

The input is a vector of width 12. It includes range,
azimuth, elevation, and time of three observations.

Output is a vector of width 6. It includes the position and
and velocity vectors at the middle observation time.

%
%

Input:
RHOl

% AZ1
% ELI
% RH02
% AZ2
% EL2
Q. RH03
Q.
O AZ3
% EL3
% Tl
Q.
O T2
% T3
%
%
%

Output:
R2

%
Q.

V2
O

9-S-9-S.9-9-9-9-9-9-9-9-9.
ooooooooooooo

Range at observation 1
Azimuth at observation 1
Elevaton at observation 1
Range at observation 2
Azimuth at observation 2
Elevaton at observation 2
Range at observation 3
Azimuth at observation 3
Elevaton at observation 3
Time at observation 1
Time at observation 2
Time at observation 3

Position vector at the middle observation time
Velocity vector at the middle observation time

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^OO'0'OOO'OOO^O'O'OO'OO'OO'O'O'O'O'O'O'O'O'Ö'D'D'Ö'O'D^^'D'

function [OUTPUT] = HGIBBS (INPUT);

format long

% INPUT = [Rangel,AZl,ELl,Tl,...,EL3,T3];

RHOl
AZ1 =
ELI =
Tl =
RH02
AZ2 =
EL2 =
T2 =
RH03
AZ3 =
EL3 =
T3 =

F =
Mu

= INPUT(1,1);
■■ INPUT(2,l)*pi/l
■■ INPUT(3,l)*pi/l
INPUT(4,1);
= INPUT(5,1);

■■ INPUT (6,1) *pi/l
■■ INPUT(7,l)*pi/l
INPUT(8,1);
= INPUT(9,1);

: INPUT(10,1
■■ INPUT (11,1
INPUT(12,1)

80;
80;

80;
80;

*pi/
*pi/

180;
180;

0.006694385;
= double(398600.5 * 1000A3);

Sitlat = 62.0 * pi/180;
Sitlon = -47.0 * pi/180;
Sitalt = 5.0;

%Sitlat = atari ((1 - F)*tan(Sitlat));

GST =0.0
LST = double(GST + Sitlon);

[Rl] = SiteTrack (Sitlat,LST,Sitalt,RH01,AZ1,ELI)
[R2] = SiteTrack (Sitlat,LST,Sitalt,RH02,AZ2,EL2)
[R3] = SiteTrack (Sitlat,LST,Sitalt,RH03,AZ3,EL3)

[RIMag] = MAG (Rl)
[R2Mag] = MAG (R2)
[R3Mag] = MAG (R3)

% Determine changes in time

T31 = double(T3 - Tl);
T32 = double(T3 - T2) ;
T21 = double(T2 - Tl) ;

% Calculate V2

Terml = double(-T32*((1.0/(T21*T31)) + Mu/(12.0*RlMagA3)));
Term2 = double((T32-T21)*((1.0/(T21*T32)) + Mu/(12.0*R2MagA3)
Term3 = double(T21*((1.0/(T32*T31)) + Mu/(12.0*R3MagA3)));

Tempi = double(Terml*Rl)
Temp2 == double (Term2*R2)
Temp3 = double(Term3*R3)

V2 = double(Tempi + Temp2 + Temp3);

% OUTPUT = [R2,V2]

OUTPUT = [R21,V2']

return

%o o o o o o o o o o o o o o o o o Q.Q.Q.Q.Q.Q.Q.Q.aQ.Q.aaaaaaaaQ.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q-g.Q.Q.Q.Q.Q.Q.9.Q.^5-^Q-9.s.9.&9-9-9-9- ^^^^^^^^^^O^OO'O'D'D^'O'O'O'O'O'O'O'5'O'O'O'O'O'O'OOOOOOOO'OOOOOOOOO'OOOOO'OO'O'OO'OOOOOOOOOO

■5 v

% function sitetrack %
% %
% Michelle I. Roxburgh 11 May 1999 %
% %
% This function determines a position vector, given range %
% azimuth, elevation, site latitude, local sidereal %
% time, and site altitude. %
% %
% Input: %
% Sitlat - Site latitude (rad) %
% LST - Local sidereal time (rad) %
% Sitalt - Site altitude (m) %
% RHO - Range (m) %
% AZ - Azimuth (rad) %
% EL - Elevation (rad) %
9- % -6 o

% Output: %
% RS - Site position vector - 3 (m) %
9- S; ■6 °
999.9Q.Q.Q.^Q.a9999999-9-9-9-9-9&&&&9&9&9-5-99-9-&9-&a9-&9Sr9-9-9-2r9-9r9-9-9-9-&^S-&S:&-S:S:SrS:9-9rS;2:9'9-&

function [R] = SiteTrack (Sitlat,LST,Sitalt,RHO,AZ,EL);

format long

[RS] = Site (Sitlat,LST,Sitalt);

RH0SEZ(1,
RH0SEZ(2,
RH0SEZ(3,

) = double(-RHO*cos(EL)*cos(AZ));
) = double(RHO*cos(EL)*sin(AZ));
) = double(RHO*sin(EL));

Colat = double(pi/2.0 - Sitlat);

[Temp] = R0T2 (RHOSEZ,-Colat) ;
[RHOIJK] = R0T3 (Temp,-LST);

R = double(RHOIJK + RS) ;

return

Appendix D:

Two-Body Propagator (PKEPLER) Code

% to
%
% Input:
% Rl
% VI
Q.
O TOF

Q.
O Output:
% R2

o o o o o o o o o Q.0 aaaaaaaaaaaaaaaaaaaaaaaa&

% %
% function pkepler %
% %
% Michelle I. Roxburgh 11 May 1999 %
% %
% This function propagates a position and velocity forward %

for a specified time. %

- Position vector - 3 (m) %
- Velocity vector - 3 (m/s) %
- Time of flight (s) %

Q,
"5

%
- Position vector - 3 (m) %

% V2 - Velocity vector - 3 (m/s) %
% %
o o o o o o Q.O o o Q.O o o o o o aaaaaaao,Q.o,aaag.aaaao,o,o,aaQ.aao,aaa
tl^^^^'6^'8'6'6^f'6'S'6^^?^?^«'6'S^o^^?'6?f'6'S'6^'ooo^'o'o'o,6^^ o o o o o o ot> o o o o o o o o o o o o^ o

function [R2,V2] = PKepler (Rl,VI,TOF);

format long

Mu = double(398600.5 * 1000A3) ;
J = 0.00108263;
Re = 6378137.0;
Limit = 0.015;

[P,A,Ecc,Inc,Omega0,Argp0,Nu0,Mean0,U0,L0,CapPi0] = ELORB (R1,V1);

% Determine NBar, OmgDot, ArgDot

Locall = double(J*(ReA2)/(PA2)) ;
Local2 = double(1.0 - (1.5*((sin(Inc))A2)));
Local3 = double(sqrt(1.0-(EccA2))) ;

NO = double(sqrt(Mu/(AA3))) ;
NBar = double(NO*(1.0+1.5*Locall*Local2*Local3)) ;

OmgDot = double(-1.5*Locall*NBar*cos(Inc));
ArgDot = double(1.5*Locall*NBar*(2.0 - 2.5*(sin(Inc))A2));

% Take into account circular and equatorial orbits

if Ecc >= Limit & Inc >= Limit
Omega = OmegaO + OmgDot*TOF;
Argp = ArgpO + ArgDot*TOF;
Mean = MeanO + NBar*TOF;
U = 'Undefined';
L = 'Undefined';
CapPi = 'Undefined';

end

if Ecc >= Limit & Inc < Limit
CapPi = CapPiO + (OmgDot+ArgDot)*TOF;
Mean = MeanO + NBar*TOF;

U = 'Undefined';
L = 'Undefined';
Omega = 'Undefined';
Argp ='Undefined';

end

if Ecc < Limit & Inc < Limit
L = LO + (OmgDot+ArgDot+NBar)*TOF;
CapPi = 'Undefined';
Mean = 'Undefined';
U = 'Undefined';
Argp = 'Undefined';
Omega = 'Undefined';

end

if Ecc < Limit & Inc >= Limit
Omega = OmegaO + OmgDot*TOF;
U = UO + (ArgDot + NBar)*TOF;
L = 'Undefined';
CapPi = 'Undefined';
Mean = 'Undefined';
Argp = 'Undefined';

end

% Determine R and V from updated COE's

[Nu] = NEWTONR (Ecc,Mean);

[R2,V2] = RANDV (P,Ecc,Inc,Omega,Argp,Nu,U,L,CapPi);

return

o o o o o Q.O Q.O o Q.O o o o o o o o o o QQQQQQ,QQ,gr(x<x<x<XQ,Q,g„Q,Q,g,Q.&QCLQ.Q.QQ.G,Q
'6^"5'6-6^"6^'6'6^'6'5'6'6'6'6'6'6'ö'6'ao'o^"o'o'o'o'ö'o'o'o'5'o'o'o'o'o'o o o o "o o 0*0 o "o o o o o o o o o o o o x> o o o o o 'S o o o

% %
% function elorb %

Michelle I. Roxburgh 11 May 1999 % g.

% This function converts ECI position and velocity vectors %
% into classical orbital elements. %
9- %. ■8 o

% Input: %
% R - Position vector - 3 (m) %
% V - Velocity vector - 3 (m/s) %
% o

% Output: %
% P - Semi-latus rectum (m) %
% A - Semi-major axis (m) %
% Ecc - Eccentricity %
% Inc - Inclination (rad) %
% Omega - Longitude of the ascending node (rad) %
% Argp - Argument of perigee (rad) %
% Nu - True anomaly (rad) %
% M - Mean anomaly (rad) %
% U - Argument of latitude (rad) %
% L - True longitude (rad) %
% CapPi - True longitude of perigee (rad) %
% %
^^^^^^^^^^^^^^'o'o'o'oo'ooao'o'o'o'o'o'o'ö'o'o'o'o'o'o'o'o'o o'o'o o o o o o o o o o 0*0 o"o o o 00 o 00 o o o o 00 o o

function [P,A,Ecc,Inc,Omega,Argp,Nu,M,U,L,CapPi] = ELORB (R,V);

format long

Mu = double(398600.5 * 1000A3);
REarth = 6378137.0;
Small = 0.000001;
Smallei = 0.015;

[RMag] = MAG (R) ;
[VMag] = MAG (V) ;

HBar = cross(R,V);
[HMag] = MAG (HBar);

NBar = cross([0 0 l],HBar);
[NMag] = MAG (NBar);

Tempi = double((VMagA2 - Mu/RMag)/Mu);
Temp2 = double(dot(R,V)/Mu);
EBar = double(Templ*R - Temp2*V);
[Ecc] = MAG (EBar);

SME = double((VMagA2 * 0.5) - Mu/RMag);
if abs(SME) > Small

A = double(-Mu/(2.0*SME));
else

A = 'Infinite';
end

P = double(HMagA2/Mu);
Inc = double(acos(HBar(3)/HMag));

TypeOrbit = 'El';
if Ecc < Small

if Inc < Smallei or abs(Inc-pi) < Smallei
TypeOrbit = ' CE' ;

else
TypeOrbit = ' CI' ;

end
else

if Inc < Smallei or abs(Inc-pi) < Smallei
TypeOrbit = ' EE' ;

end
end

if NMag > Small
Omega = double(acos(NBar(1)/NMag));
if NBar(2) < 0.0

Omega = double(2.0*pi - Omega);
end

else
Omega = 'Undefined';

end

if TypeOrbit == 'El'
Argp = double(acos(dot(NBar,EBar)/(NMag*Ecc)));
if EBar(3,:) < 0.0

Argp = double(2.0*pi - Argp);
end

else
Argp = 'Undefined';

end

if (TypeOrbit == 'El') | (TypeOrbit == 'EE')
Nu = double(acos(dot(EBar,R)/(Ecc*RMag)));
if double(dot(R,V)) < 0.0

Nu = double(2.0*pi - Nu);
end

else
Nu = 'Undefined';

end

if TypeOrbit == 'CI'
U = double(acos(dot(NBar*R)/(NMag*RMag)));
if R(3,:) < 0.0

U = double(2.0*pi - U) ;
end

else
U = 'Undefined';

end

if Ecc > Smallei & TypeOrbit == 'CE'
CapPi = double(acos(EBar(1)/Ecc));
if EBar(2,:) < 0.0

CapPi = double(2.0*pi - CapPi);

end
else

CapPi = 'Undefined';
end

if RMag > Small & TypeOrbit == 'CE'
L = double(acos(R(l)/RMag));
if R(2,:) < 0.0

L = double(2.0*pi - L) ;
end

else
L = 'Undefined';

end

if double(Ecc - 1.0) > Smallei
F = double(acosh(A-RMag/(A*Ecc))) ;
M = Ecc*sinh(F) - F;

else
if abs(Ecc-l.O) < Smallei

D = double(sqrt(P)*tan{Nu*0.5)) ;
M = doublet(1.0/6.0)*(3.0*D + DA3));

else
if Ecc > Smallei

Temp = double(1.0 + Ecc*cos(Nu));
if abs(Temp) < Small

M = 0.0
else

sinE = double(sqrt(1.0 - EccA2)*sin(Nu)/Temp);
cosE = double((Ecc + cos(Nu))/Temp);
if abs(sinE) > 1.0

sinE = sign(1.0,sinE);
end
if abs(cosE) > 1.0

cosE = sign(1.0,cosE);
end
E = double(atan2(sinE,cosE));
M = double(E - Ecc*sin(E));

end
else

if TypeOrbit == 'CE'
M = L;

else
M = U;

end
end

end
if M < 0.0

M = double(M + 2.0*pi);
end

end

return

function randv

Michelle I. Roxburgh 11 May 1999

This function determines a position and velocity vector,
given classical orbital elements.

%
Q,
'S

Input:
P

0 Ecc
% Inc
'O

Q.
O

%

Omega
Argp
Nu

Q,
O Ü
"5 L
%
%

CapPi

%
%

Output:
R

% V

Semi-latus rectum (m)
Eccentricity
Inclination (rad)
Longitude of the ascending node (rad)
Argument of perigee (rad)
True anomaly (rad)
Argument of latitude (rad)
True longitude (rad)
True longitude of perigee (rad)

Position vector - 3 (m) %
Velocity vector - 3 (m/s) %

9-9-9-9-9-S-S-e-S-9-&9-9-3-5-9-5-9-&S-9-9-9-Ö-S-9-S-9-S-Q-9-9-9-e-e-9-9-9-5-e-9-9-9-Q-9-9-9-9-S-e-Q-9-9-Q-Q-S-Q-9-Q-Q-S-Q.Q.9.Q.Q.aa,3.Q.
oooooo'oooooooooooo'oooooo'oooooooooooooooooooooooo'o'ooo'o'o'o'o'o'o'6'o'o'o'o'o'o'o'o'o'o'o

% Michelle I. Roxburgh
% Function RandV
% This function determines a position and velocity vector, given classical
% orbitial elements.

function [R,V] = RANDV (P, Ecc, Inc,Omega,Argp,Nu,U,L,CapPi);

format long

Small = 0.015;
Mu = double(398600.5 * 1000A3);

if Ecc < Small
if Inc < Small or abs(Inc - pi) < Small

Argp = 0.0;
Omega = 0.0;
Nu = L;

else
Argp = 0.0;
Nu = U;

end
else

if Inc < Small or abs(Inc - pi) < Small
Argp = CapPi;
Omega = 0.0;

end
end

Temp = P/(1.0 + Ecc*cos(Nu));
RPQW(1,
RPQW(2,
RPQW(3,

= Temp*cos(Nu);
= Temp*sin(Nu) ;
= 0.0;

RPQWmag = sqrt(RPQW(1,:)A2+RPQW(2,:)A2+RPQW(3,:)A2);

VPQW(1,
VPQW(2,
VPQW(3,

= -sin(Nu)*sqrt(Mu/P) ;
= (Ecc + cos(Nu))*sqrt(Mu/P);

) =0.0;
VPQWmag = sqrt(VPQW(1,:)A2+VPQW(2,:)A2+VPQW(3,:)A2)

[TempVecl] = ROT3 (RPQW,-Argp);
[TempVec2] = ROT1 (TempVecl,-Inc);
[R] = ROT3 (TempVec2,-Omega);

[TempVec3] = ROT3 (VPQW,-Argp);
[TempVec4] = ROT1 (TempVec3,-Inc);
[V] = ROT3 (TempVecl,-Omega);

return;

% function NEWTONR %

% Michelle I. Roxburgh 11 May 1999 %
o. 9-

% This function determines true anomaly using eccentricity %
% and mean anomaly. %

% Input: %
% Ecc - Eccentricity %
% M - Mean anomaly (rad) %
% *
% Output: %
% Nu - True anomaly (rad) %
% *
^^"6^"6ti'6'6'6'6^^:St>*6t)'ö;5;ö;ö;5'ö'oo'6^^j.g"o'o"o"o'o'D'o'o'o'o'o'o'o ^ ^ ^ ^ ^ ^ ^^ Q ^ ^ ^ Q ^ Q Q Q Q Q^ Q O Q Q 0 t> t> o

function [Nu] = NEWTONR (Ecc,M);

format long

EO = M;
I = 1;

El = EO - ((EO - Ecc*sin(E0) - M)/(1.0 - Ecc*cos(EO)));

while abs(El-EO) >= 0.0000001 & I <= 20
E0 = El;
El = E0 - ((E0 - Ecc*sin(E0) - M)/(1.0 - Ecc*cos(E0)));
1 = 1 + 1;

end

sinv = (sqrt(1.0 - EccA2)*sin(El))/(1.0 - Ecc*cos(E0));
cosv = (cos(El) - Ecc)/(1.0 - Ecc*cos(El));
Nu = atan2(sinv,cosv);

if Nu < 0.0
Nu = 2.0*pi + Nu;

end

return

Appendix E:

Track Updating with New Measurements Code

function radar

Michelle I. Roxburgh 11 May 1999

This function executes an Extended Kaiman Filter.

Input is a vector of width 46.

Output is a vector of width 42.

a Input:
g.
o Rinit
0 Vinit
Q.
O P
% Range
Q.
O Azimuth
% Elevation
%
% Output:
a
o R
% V
a
o PNew

Initial position vector -
Initial velocity vector -
Covariance matrix (6x6)
Range (m)
Azimuth (deg)
Elevation (deg)

- Position vector - 3 (m)
- Velocity vector - 3 (m/s)
- Covariance matrix (6x6)

(m)
(m/s)

^^?^'6'6'5'6'5%'6'6'6'5'6"6"6'Ö'6'o'S'6'6*6'6'6^'6'S'6'5^'6'ö'6'6'ö'S'6'w«'o^"^"o^^ o o o o o o o ^ o o o o o o o ^ o o o o o

function [OUTPUT] = radar (INPUT);

format long

INPUT = [R(l)...V(3), P(l,l) P(6,6),Range,AZ,EL,DeltaT]

Rinit(1,1)
Rinit(2,1)
Rinit(3,1)

Vinit(1,1)
Vinit(2,1)
Vinit(3,1)

INPUT(1,1)
INPUT(2,1)
INPUT(3,1)

INPUT(4,1)
INPUT(5,1)
INPUT(6,1)

[INPUT(7:12,1) '
INPUT(13:18,1)
INPUT(19:24,1)
INPUT(25:30,1)
INPUT(31:36,1)
INPUT(37:42,1)

Obs = [INPUT(43,1);
double(INPUT(44,l)*pi/180);
double(INPUT(45,l)*pi/180)];

DeltaT = INPUT(46,1);

Radar (1,1) = 62.0*pi/180;
Radar (2,1) = -47.0*pi/180;
Radar (3,1) = 5.0;

F = 0.006694385;

Radar(l,1) = atan((l - F) *tan(Radar(1,1))) ;

LST = Radar(2);

Noised, 1) = 0.026;
Noise(2,l) = 0.026*pi/180.0;
Noise(3,1) = 0.022*pi/180.0;

% Calculate the Weight Matrix

R = zeros (3);
R(l,l) = 1.0/Noised) A2
R(2,2) = 1.0/Noise{2)A2
R(3v3) = 1.0/Noise(3) A2

% Calculate the Predicted State

[RPredict,VPredict] = PKEPLER (Rinit,Vinit,DeltaT);

[RS] = SITE (Radar(l) , LST,Radar(3)) ;

[RHONom,AZNom,ELNom] = RAZEL (RPredict,RS,Radar(1) , Radar(3),LST);

XPredict(1,1) = RPredict(1,1)
XPredict(2,1) = RPredict(2,1)
XPredict(3,1) = RPredict(3,1)
XPredict(4,1) = VPredict(1,1)
XPredict(5,1) = VPredict(2,1)
XPredict(6,1) = VPredict(3,1)

Z(l,l) = double(Obs(1) - RHONom);
Z(2,l) = double(Obs(2) - AZNom);
Z(3,l) = double(Obs(3) - ELNom);

% Find the PHI Matrix

[PHIMatrix] = PHI (Rinit,DeltaT);

% Calculate the Predicted Covariance, assume no Q

PBar = PHIMatrix*P*PHIMatrix';

% Find the H Matrix

[H] = HMatrix (RPredict,LST,Radar) ;

% Calculate K

KMatrix = PBar * H' * inv(H * PBar * H' + R);

% Calculate DeltaX and the New State Vector

DeltaXHat = KMatrix*Z;

XNew = XPredict + DeltaXHat;

% Calculate the New Covariance Matrix

PNew = PBar - (KMatrix*H*PBar) ;

% OUTPUT = [R(l)...V(3),P(1,1) . . .P(6,6)]

OUTPUT = [XNew',PNew(l,l:6),PNew(2,1:6),PNew(3,1:6) , PNew(4,1:6) , ..
PNew(5,1:6),PNew(6,1:6)] ;

return;

% %
% function PHI %
% %
% Michelle I. Roxburgh 11 May 1999 %
9- <i
"o 15

% This function determines the state transition matrix needed %
% needed for the Extended Kaiman Filter. %
% %
% Input: %
% R - Position vector - 3 (m) %
% DeltaT - Time between filtering (s) %
% -, """' %
% Output: %
% PHIMatrix - State transition matrix (6x6) %
&■ 9- "o -5

9-9-9-9-&9-&&S-9-9-&9-9-9-9-5-9-9-2-9-9-9-9-&9-9-9-&-S-S-9-9-9-9-9-9-&9-9-9-9-&S-S-9-9-S-9-S-9-S-9-9-9-9-9-9-9-S-Q-Q-Q-9-0 9-° ° ° ° oooooo'ooooo'ooooooo^'oooooooooo'ooooooooo'ooooooo'oooooooooooooooo'o'o'oo'o'o'o'o'o

function [PHIMatrix] = PHI (R,DeltaT);

format long

% Get the F Matrix

[F] = FMatrix(R);

% Do calculations for PHI Matrix

PHIMatrix = eye(6) + F*DeltaT + (F*F*DeltaTA2)/2.0;

return

Q.O o Q.O o o o o o o o o o o Q.O o o o Q.O o.Q.9.9.9.o.9.9,9.Q.Q,Q.Q.Q.Q.Q.9-9.9-99.9.9.9Q.9.9.9.9.Q.Q.Q.9.9-Q.9.9-9-9"9-9-9-9r9-9-9-9-9- ^'S'6^'0'6'6'5'5'50'0000^'0'0'0^'0'0'0'0^'00000000000000000'0000000000000'000000000'000000

8- %. -6 o

% function FMatrix %
9. 9-

% Michelle I. Roxburgh 11 May 1999 %
9- %

% This function determines the two-body partial derivative %
% matrix needed for the Extended Kaiman Filter. %
% %
% Input: %
% R - Position vector - 3 (m) %
9- 9-

% Output: %
% F - Two body partial derivative matrix, F (6 x 6) %

function [F] = FMatrix (R);

format long

Mu = double(398600.5 * 1000A3);

[RMag] = MAG (R) ;

% Set initial F entries to 0

F = zeros(6);

% Set nonzero entries of F to their values

F(l,4) = 1.0
F(2,5) = 1.0
F(3,6) = 1.0

F(4,l) = double((-Mu/RMagA3) + (3.0*R(1)A2)/RMagA5)
F(5,l) = double(3.0*Mu*R(l}*R(2)/RMagA5)
F(6,l) = double(3.0*Mu*R(l}*R(3)/RMagA5)
F(4,2) = double(3.0*Mu*R(l)*R(2)/RMagA5)
F(5,2) = doublet(-Mu/RMagA3) + (3.0*Mu*R(2)A2)/RMagA5)
F(6,2) = double(3.0*Mu*R(2)*R(3)/RMagA5)
F(4,3) = double(3.0*Mu*R(l)*R(3)/RMagA5)
F(5,3) = double(3.0*Mu*R(2)*R(3)/RMagA5)
F(6,3) = doublet(-Mu/RMagA3) + (3.0*Mu*R(3)A2)/RMagA5);

return

i o o o o o o o o o o o o o o Q.CLO o Q.O o o Q.Q.Q.Q.Q.Q.Q.Q.Q.Q-Q-5-Q.'3.'i9.9-e.9-9-9-Q-Q-9-9-S-9-9-9-9-2-9-9-9-9-B-9-S-9-9-5-9-S-S-S-5-S-

function HMatrix

Michelle I. Roxburgh 11 May 1999

This function determines the H matrix need for the Extended
Kaiman Filter.

Input:
RNom
LST
Radar

Output:
H

- Position vector - 3 (m)
- Local sidereal time (rad)
- Vector of site latitude, longitude, and altitude

H Matrix

function [H] = HMatrix (RNom,LST,Radar);

format long

% Calculate Nominal Observation Values

[RS] = Site (Radar(l),LST,Radar(3));
[RHONom,AZNom,ELNom] =RAZEL (RNom, RS, Radar (1) , Radar (3) , LST) ;

% Calculate values of H matrix entries

H = zeros (3,6);

for I = 1:3
RPert = double(1.005*RNom(I,:));
DeltaR = double(0.005*RNom(I,:));

if I == 1
RNomTemp(l,:) = RPert;
RNomTemp(2,:) = RNom(2, :
RNomTemp(3,:) = RNom(3,:

elseif I == 2
RNomTemp(1,:) = RNom(l,:
RNomTemp(2,:) = RPert;
RNomTemp(3,:) =RNom(3,:

elseif I == 3
RNomTemp(1,
RNomTemp(2,
RNomTemp(3,

) = RNom(1,:
) = RNom(2,:
) = RPert;

end

end
RNomTemp(4,:) = sqrt(RNomTemp(1,:)A2+RNomTemp(2,:)A2+RNomTemp(3,:)A2);
[RHOPert,AZPert,ELPert] = RAZEL (RNomTemp,RS,Radar(1),Radar(3),LST);
DeltaRHO = double(RHOPert - RHONom);
DeltaAZ = double(AZPert - AZNom);
DeltaEL = double(ELPert - ELNom);
H(1,I) = double(DeltaRHO/DeltaR);
H(2,I) = double(DeltaAZ/DeltaR);
H(3,I) = double(DeltaEL/DeltaR);

return

Appendix F:

Track Updating without
New Measurements Code

function propagate

Michelle I. Roxburgh 11 May 1999

"6 Input:
% DeltaT
0.
~6 Rinit
% Vinit
% P
%
"6 Output:
"6 R
% V
% PNew
%

This function updates the target state and covariance
matrix between updated information from the track
radar.

Input is a vector of width 43.

Output is a vector of width 42.

Time since the last update
Initial position vector - 3 (m)
Initial velocity vector - 3 (m/s)
Covariance matrix (6x6)

- Position vector - 3 (m)
- Velocity vector - 3 (m/s)
- Covariance matrix (6x6)

^9-9-9-9-S-9-9-9-9-9-9-9-9-9-9-9-9-9-S-5-9-9-9-9-9.Q.Q.9-5-Q.Q.9-9.9.9.9.9.9.9.Q-Q.Q.5.5.Q.5.Q-S.Q-^
JOOOOOOO O O OOOO O OOOO O OOO O O'O'OO'OOO'O'O'O'O'O'O'O'O'OC^'O'S'O'S'O'O^'O'i

function [OUTPUT] = propagate (INPUT);

format long

INPUT = [DeltaT,R(l)...V(3),P(1,1)...P(6,6)]

DeltaT = INPUT(1,1);

Rinit(1,1) = INPUT(2,1)
Rinit(2,1) = INPUT(3,1)
Rinit(3,1) = INPUT(4,1)

Vinit(1,1) = INPUT(5,1)
Vinit(2,1) = INPUT(6,1)
Vinit(3,1) = INPUT(7,1)

P = [INPUT(8:13,1)';
INPUT(14:19,1)
INPUT(20:25,1)
INPUT(26:31,1)
INPUT(32:37,1)
INPUT(38:43,1)'];

Radar (1,1) = 62.0*pi/180;
Radar (2,1) = -47.0*pi/180;
Radar (3,1) = 5.0;
F = 0.006694385;

Radar(1,1) atan (F)*tan(Radar(1,1)));

% Find the PHI Matrix

[PHIMatrix] = PHI • (Rinit,DeltaT) ;

% Calculate the Predicted Covariance, assume no Q

PNew = PHIMatrix*P*PHIMatrix';

OUTPUT = [XNew',PNew(l,l:6),PNew(2,1:6),PNew(3,1:6),PNew(4,1:6),
PNew(5,l:6),PNew(6,1:6)] ;

return;

Appendix 6:

Additional Functions

QQSSQQQQ9SSSSQQQ9Q9QeSSSQQQSQQQSSQQ9SQQQ9S9QQSSQQQ9Q9-Q-Q-QQ.QQQ.Q-Q.9.Q.Q.Q-Q.Q-Q-Q-
'o'o'Dti'o'o'o'o O "O "O "O "O "0 O "0 "O O O "O O ^ "O 15 O^^^^X'5'O'O'O^'O'Ö'O'O'O'O'O'O'O'O'O'O^'O'D'O'O'Ö'O'O'Ö'D'D'D^'D^'O^'O^'O'Ö'Ö^

ä Q

% function R0T1 %
% %
% Michelle I. Roxburgh 11 May 1999 %
9- 9- o t>

% This function rotates about the X axis, given a vector and %
% an angle. %
9- 9-
o -6

% Input: %
% Vectorl - Input vector of width 3 %
% RotAngle - Rotation angle (rad) %
% %
% Output: %
% Vector2 - Output vector of width 3 %
% S-

o o o o "o o "o o o o o "o o "o o "o o o o "o "o o'o"o"o"o"o'o"o o'o'olä'o'o'o'oli'o'o'o'otS'o'o'o'o'o'o'o'o'o'o'o^'o'o'ö'o'o'o'ö'o'ö'ö'o'o'otj'o

function Vector2 = R0T1(Vectorl, RotAngle);

M_l_2 = [1, 0, 0;
0, cos(RotAngle), sin(RotAngle);
0, -sin(RotAngle), cos(RotAngle)];

Vector2 = M_l_2 * Vectorl;

return

0.0 o o o Q.O o o o o o o o o o aaaaaaaaaaaaaaaaaaaaaaaaaaa ^^^^^^^^^^^^^^^^^^^^^^^^^^ow^^^^'S'S'S'Ö'a'ö'ö'O'O'O'O'Oö'O'o'O ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °" °" °

% %
% function R0T2 %
% %
% Michelle I. Roxburgh 11 May 1999 %
% %
% This function rotates about the Y axis, given a vector and %
% an angle. %
% %
% Input: %
% Vectorl - Input vector of width 3 %
% RotAngle - Rotation angle (rad) %
% %
% Output: %
% Vector2 - Output vector of width 3 %
% %
??'6'8'6,S??^??'6'3^?'S^'6'S^'o'o'o,o^'o'o'oo'o'8co^'3 o o o o o o o o o o"5 o o^ o o o o o o^ o o o o o o o o o o

function Vector2 = R0T2(Vectorl, RotAngle);

M_l_2 = [cos(RotAngle) , 0, -sin(RotAngle);
0, 1, 0;
sin(RotAngle), 0, cos(RotAngle)] ;

Vector2 = M_l_2 * Vectorl;

return

o o o o o o o o o o o o o x> o o o o o o o o o o o o o o o o o o^^^^^^^^^'c'o'o'o'0'0'0'0'0'0'0'0'0'0'0'0'5'0'0'5'5'5'5'5'6'6'5'6^

^ 'S

% function ROT3 %
o %

% Michelle I. Roxburgh 11 May 1999 %
9- 9- o 'S

% This function rotates about the Z axis, given a vector and %
% an angle. %

Input vector of width 3
Rotation angle (rad)

Output vector of width 3 %
9- 9-
o ~6

9-&9-9-9-9-9-9-9-9-£9-9-9-£
O O O O OOOOO'DOO OOOOOOOOOOO OOO'ÖO'ÖOO'OOOOO OOO'Ö'O'OOO'ÖO'O O'ÖO'ÖO'O'ÜO'S'D'D'ö'D'O'ö'öij'Ö'üijtj'ölS

function Vector2 = R0T3(Vector1, RotAngle);

M_l_2 = [cos(RotAngle), sin(RotAngle), 0;
-sin(RotAngle), cos(RotAngle) , 0;
0, 0, 1];

Vector2 = M_l_2 * Vectorl;

return

%
%

Input:
Vectorl

%
%

RotAngle

%
%

Output:
Vector2

ö-Q-Ö-e-9-9-Q-^Q-&9-Q-Q-e-Q-S-e-5-S-S-9-9-S-S-G-e-S-e-9-e-9-Q-S-Q-5-9-9-S-5-Q-S-9-Q-9-9-S-9-S-Q-Q-9-9-5-9-9-S-9.e-^&^Q.Q-Q.Q-Q.Q.Q.Q.Q.
'O'O'O'O'O'Ö'O'O'O^'O'O^'O'O'O o "o o o o o "o o "o ^ "o "o ^5 "o o o "o O'O'O'O'O'O^^'O^ O "O "O "0 "O 'S 'S O^'O'O'O'O'O'O'O'O'O'O'O'O'O'OiätJ'Ö'O

% function mag %
% %
% Michelle I. Roxburgh 11 May 1999 %
9- 9- "o "6

% This function determines the magnitude of a vector (3). %
% ■ %

% Input: %
% Vector - Vector of width 3 %
% %
% Output: %
% Magnitude - Magnitude of the vector %
9- 0-
■o -o

9-&&9-9-99-S-9-2-9-9-9-S-9-2-9-9-9-9-&9&&9-9-&99S-9-&9&&9&99-5-9-9-5-9-S-9-5-9-000

OO'OOOOOOO'OO'OO'OO^OOO'OOOOOOO'OO'O'OO'OOOOOOOOOOOOOOOOOOO'OOOOOOOOOO^^^'O'O'Q'D'O'5'O

function [Magnitude] = MAG (Vector);

format long

Magnitude = sqrt(Vector(1)A2+Vector(2)A2+Vector(3)A2);

return

